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A numerical analysis of two-dimensional wave scattering problems is performed. The 
treatment relies on the parabolic approximation and provides the forward scattered 
wave field. Two probIems are considered in particular: (i) the scattering of plane waves 
by a cylindrical inhomogeneity of uniform refraction index, (ii) the scattering of plane 
waves by a viscous core vortex. The structure of the scattered field is examined in 
detail and the numerical solutions of the two problems are compared to analytical 
results obtained in the Born approximation and interpreted according to the method 
of smooth perturbation. 

1. Introduction 
Wave scattering problems are of importance in numerous domains such as electro- 

magnetic propagation in the earth’s upper atmosphere, optical beam transmission in 
fibres, laser radiation, acoustic propagation in the atmosphere and under water, 
seismic waves in the earth’s crust, free surface waves on a variable bottom etc. The 
present analysis is concerned with the scattering of acoustic waves by temperature 
and velocity inhomogeneities. It is based on the paraxial or parabolic approximation 
and deals with two elementary (but typical) two-dimensional problems: (i) the 
scattering of plane waves by a temperature (or refraction index) inhomogeneity 
having a cylindrical shape with a circular or elliptical cross-section, (ii) the scattering 
of plane waves by a viscous core vortex. 

These two situations are simple but their analysis may help in comprehending more 
complicated practical problems encountered in acoustics such as: (i) acoustic wave 
propagation across the shear layer of a free jet; (ii) sound scattering by atmospheric 
turbulence; (iii) detection of the trailing vortices of wide body aircraft; (iv) deter- 
mination of the detailed structure of a turbulent field from information contained 
in a scattered wave field. 

The first of these problems is of particular importance in aeroacoustics. This 
situation is for example that of internal noise radiating from the jet engine tail pipe. 
It is also encountered in the anechoic open wind tunnel facilities used to simulate 
the forward flight effects on aircraft noise radiation. 

Experimental observations performed in this type of installation by Candel, Guedel 
& Julienne (I975,1976a, b,  1977) indicate that a coherent sound wave may be strongly 
scattered and that as a consequence acoustic measurements like spectral and cross- 
spectral densities coherence and sound pressure level are affected by this mechanism. 

Now, a direct numerical analysis of one of these complicated situations would be 
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hazardous and it appears useful to first develop and check numerical tools in the case 
of simpler problems allowing a physical interpretation and possibly a quantitative 
comparison with analytical results. Indeed even the parabolic approximation which 
forms the basis of the present analysis is still unfamiliar and an evaluation of its 
possibilities is also needed. 

At this point it is worth giving some details on this approximation. Mathematically, 
the parabolic approximation consists of replacing the equation describing the inter- 
action between an inhomogeneous medium and an acoustic field by a parabolic 
equation. In this manner the propagation problem becomes a Cauchy problem and 
the pressure field may be calculated from its value in an initial section. Physically i t  
consists of neglecting the waves scattered backwards by the medium and only dealing 
with the waves propagating in the forward direction around the incidence axis. 
Claerbout ( 1  976) gives an excellent discussion and Woude & Bremmer (1 975) present 
interesting theoretical considerations of this forward scattering approximation. 

In a number of situations the scattering cross-section has reduced values for the 
higher scattering angles and the backscattered waves are an order of magnitude 
weaker than those scattered forward around the incidence direction (see for instance 
the measurements performed by Baerg & Schwarz (1966), theoretical results presented 
by Lighthill (1953); Monin (1962); Tatarski (1961, 1971) and discussions given below). 
These observations suggest that the backscattered waves may be neglected in many 
cases and that the parabolic approximation is well suited to the analysis of forward 
scattering problems. Indeed numerous theoretical studies of scattering by turbulence 
have been conducted with various types of paraxial approximations and this approach 
is well illustrated in two monographs by Tatarski (1961, 1971). 

I n  optics the paraxial approximation (sometimes called the Fresnel approximation) 
is classically used to analyse radiation and propagation problems in free space. More 
recently, it has been applied in numerical calculations of laser beam propagation. One 
of the first studies of this subject seems to be due to Kelley (1965) and concerns the 
nonlinear self-focusing of optical beams. Other examples are provided by Wallace & 
Lilly (1974), Lilly & Miller (1977) who analyse the propagation and blooming of 
pulsed laser beams in the atmosphere. Ulrich (1975) gives a general review of the 
numerical techniques and principal results obtained in this domain. 

In acoustics the parabolic approximation forms the basis of a restricted but 
increasing number of numerical studies of underwater propagation (Hardin & Tappert 
1973; McDaniel 1975, 1976; De Santo, Perkins & Baer 1977). The scattering of sound 
waves by turbulent media is treated extensively but with analytical methods relying 
on various classical approximations such as (i) the Born approximation, (ii) the 
method of smooth perturbations (also called Rytov’s method of smoothing), (iii) the 
parabolic equation method, (iv) kinetic theory and transport equations. The mono- 
graphs of Tatarski (1961, 1971), the review papers presented by Barabanenkov, 
Kravtsov, Rytov & Tatarski (1971) and by Ishimaru (1977) describe in detail the 
problems, methods and principal results obtained in this research area. In addition 
Frisch ( 1968) gives an interesting discussion of the mathematical techniques applicable 
to the study of wave propagation in random media. 

Outside the optical domain the parabolic approximation does not seem to have 
been widely applied to the numerical analysis of scattering problems. One objective 
of this study is to demonstrate its usefulness for dealing with such problems. To allow 
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a good comprehension of the numerical results obtained we first develop ( $ 2 )  the 
parabolic equation describing the interaction of an acoustic field and a turbulent 
medium. A brief description of the finite difference method used for solving this 
equation is given in 3 3. A more detailed presentation and applications to radiation 
problems may be found in a separate note (Candel 1977). Section 4 concerns the 
scattering of plane waves by a cylindrical inhomogeneity having a circular or elliptical 
cross-section and a uniform index of refraction. The scattering of plane sound waves 
by a viscous core vortex is examined in 3 5. Appendices A and B provide analytical 
solutions of t,hese two problems, based on the Born approximation, and appendix C 
recalls the relation existing between the Born approximation and the method of smooth 
perturbation. This relation is used in our comparison of analytical and numerical 
results. 

2. Parabolic equation for a medium containing temperature and velocity 
inhomogeneities 

The propagat,ion of a weak acoustic field in a turbulent medium characterized by 
(i) velocity fluctua.tions much smaller than the sound speed (u/c, < l) ,  (ii) tem- 
perature fluctuations much smaller than the ambient temperature (TITo < 1 )  (iii) a 
low mean flow Mach number (M, = uo/c0 < l ) ,  may be conveniently described by the 
following equation: 

In  this expression T' and ui represent the temperature and velocity fluctuations in 
the medium, p and vj are the perturbations associated with the acoustic field and 
To, po, co designate the mean temperature, density and sound speed. Equation (1) 
describes the linear interactions between the turbulent and sound fields. Various 
methods yield this equation or similar forms. Lighthill (1963), Howe (1973), and 
Ffowcs Williams & Howe ( 1  973) start from Lighthill's equation 

written in absence and presence of the sound field. By subtracting the equations 
corresponding to these situations Ffowcs Williams & Howe (1973) find an equation 
describing the linear and nonlinear (up to second order) interactions of the medium 
fluctuations and acoustic perturbations. 

Another method consists of starting with a development of all the field variables 
in sums of three terms mean flow, turbulent fluctuation, acoustic perturbation - and 
writing the Navier--Stokes and energy equations in the presence and absence of the 
exterior sound field. After subtraction of the equations obtained in these two cases, 
a certain amount of algebra and various order of magnitude considerations lead to 
( 1 ) .  This approach is that of Huang (1975) who also treats the case of a finite mean flow 
Mach number. 

I 6-2 
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Now, when the propagation medium is (or may be considered as) time indepeqdent 
and in the case of a monochromatic incident sound field, (1) becomes 

The acoustic velocity perturbations may be eliminated by making use of the linearized 
momentum equation, thus yielding 

If the turbulent field is assumed to be incompressible ( h i l a x i  = 0) the last equation 
becomes 

Starting from this expression we shall now develop an equation for the scattered field 
in the Born approximation and next derive a propagation equation based on the 
parabolic approximation. 

Scattered field equation in the Born approximation 

The Born approximation consists of replacing the field variable p by the sum of an 
incident (p,) and a scattered (p , )  field, p = p ,  +p,, and then of neglecting the interaction 
between the scattered and turbulent fluctuations. Performing these operations on (5) 
leads to 

If the incident field is a plane wave 

p,(r) = exp ( ik.  r) = exp (ikm . r), (7) 

where m designat,es a unit vector in t,he wave vector direction, (6) becomes 

T' u.m 
V2p, + k2ps = [ k2 + 2k2 - - 

CO 

and may be written more compactly a.s 
im 0 

V2p, + k2ps = PO Zk2 ( 1 - - k ) (;g+y). (9) 

This expression is given by various authors Monin (1962), Clifford & Brown (1970), 
Clifford (1972), Tat,arski (1971). Monin (1962) notes that 
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acts like an index fluctuation for a plane wave propagating in the direction of m. 
Clifford (1972) gives an interesting physical meaning to the quantity 

For this he considers the generalized index of the medium, defined as the ratio 
between a reference sound celerity co and the local phase velocity of a plane wave 
propagating in the m direction: 

C N = - o =  
cd c+u .m’  

For weak turbulent fluctuations 

and 

or 

c 2: co( 1 + T’/2T0), 

N 2: 1/(l+T’/2To+u.m/co), 

~ 2 :  I - ( - + + )  21‘ u m = 1+n,. 

2TO 

Thus n, appears as the generalized index fluctuation for a wave propagating in the m 
direction. 

Thus, in the Born approximation, the scattered field satisfies an inhomogeneous 
Helmholtz equation (9).  The right-hand side of this expression contains the index n, 
and its derivative in the incidence direction: 

Vzp, + k2p, = - 2k2po n, + 2ikpom . Vn,. (15) 

Because this equation is linear, the scattered field may be decomposed as a sum of 
two terms pa = pi  +pi  which separately satisfy 

(16) Vzpf -I- kzpf = - 2k2p0 n,, 

V2p: + k2p2, = 2ikpom. Vn,. 

It is of interest to our analysis to estimate the relative magnitude of these two scattered 
waves. Indeed it is a simple matter to show that in the far field (the Fraunhofer region) 

where K denotes the ‘converted’ wave vector, i.e. the difference between the scattered 
(kn) and incident (km) wave vectors 

Then 
K = k(n-m). 

p;  = (m .n-  1 ) p f ,  

and if 0 represents the scattered angle between directions m and n 

For scattering angles 0 < 30” this ratio is greater than 7.5 and pi is negligible com- 
pared to pi. 
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Therefore, in the vicinity of the incidence direction the full equation (15) may be 
replaced by the simpler expression 

V2ps + k2p, = - 2k2n,p0 = 2k2 

We note that this last equation forms the basis of Tatarski’s first monograph and in 
view of our discussion the results presented are only applicable to low scattering angle 
situations, i.e. to forward scattering. For higher scattering angles, the full equation 
(15) must be used (Kraichnan’s remark in Tatarski 1961 and also Monin 1962; 
Tatarski 1971). 

Propagation equation in the parabolic approximation 

To transform (5) into a parabolic expression we write the pressure field in the form 

P(r) = Po(r) $(r), (23) 

where p o ( r )  represents the incident sound field such as for example a plane wave 
exp (ikm . r )  and @(r) is an unknown function which, due to its definition, exhibits 
only slow variations in the incidence direction. 

Upon substitution of ( 2 3 )  the left-hand side of ( 5 )  becomes 

(2ik.  V$ + 0”) exp (ik . r). 

The right-hand side of (5) appears as the sum of four terms describing the linear 
interaction between the acoustic and turbulent fields. Consider for example 

In the parabolic approximation $ is a slowly varying function so that 

By keeping only the leading term in (24) : 

T‘ T‘ a2p 
To axiaxi To 
-- N _ -  - k2$exp ( ik.  r) .  

Similar simplifica.tions may be used for the other terms of the right-hand side of (5).  
This yields 

(27) 
T‘ u T’ 

2 ik .  V$ + Q2$ = - Sikmm : V - + k2- + 21c2- 
co To 

which may be cast in the compact form 

We note that the interaction term looks similar to the one obtained in the Born 
approximation. 

There is however an important difference: the index n‘ now multiplies the function 
$ to be determined while (15) only exhibits a product of n’ and the incident field po. 
The interaction term is here ‘ parametric ’. 
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To cast (28 )  into a parabolic form it is convenient to choose one reference axis (for 
example Oz) parallel to the incidence direction. The parabolic approximation then 
consists of neglecting a2@,'az2 with respect to the other terms of the left-hand side: 

The following analysis is based on a simplified version of this equation obtained 
by neglecting 

- 

While this simplification cannot be precisely justified we may conjecture from our 
discussion of the Born approximation that the contribution of this term is, in the 
neighbourhood of the incidence axis, small compared to that arising from 

As the parabolic equation is only applicable to essentially forward scattering this 
simplification seems consistent (but of course not essential and the whole analysis 
could have been carried with the full equation (30)). 

Thus the numerical results presented in the following sections pertain to the reduced 
eauation 

(33)  

In  some cases we replaced the right-hand side by a term of the form - k2(N2 - 1)  $, 
where the refractive index N is related to the temperature or velocity fluctuations by 

3. Numerical solution method 

Nicholson scheme on a double scale grid. 

form using the following system of reduced co-ordinates: 

Various numerical methods are discussed in Candel (1977).  We use here the Crank- 

The parabolic equation written in two dimensions is first cast in dimensionless 

x* = x /L ,  z* = z/zl, (35)  

where z1 = 47rLz/h, L being a characteristic dimension of the calculation domain. 
This leads to  

.a$ a2$ 
a - + + + f ; ( N 2 - 1 ) $  = 0,  

az* ax: 

where k* = f L  = 2 n L / h  is a dimensionless wavenumber. 
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FIGURE 1. Double scale calculation grid. In the central region the nodes are separated by 
Ax,,, = 0.005. In the external regions Az,,,, = 4A2, = 0.02. In the axial direction Az* = 0.0002. 

If @( jAx*) nAz,) = $7 designates the value taken by the field variable a t  the nodes 
of the calculation grid, (36) written in finite difference form according to  the Crank- 
Nicholson method becomes 

I n  writing this expression we have somewhat arbitrarily evaluated the inhomo- 
geneous interaction term ka(N2 - 1) @ a t  step n + 1. At each step in the z direction the 
solution may be obtained by solving the system of equations (37) for all internal nodes 
(1 c j c M ) .  Two additional equations are provided by the conditions set on the left 
and right boundaries. The system thus defined is tridiagonal and its solution may be 
calculated with great accuracy and speed by applying classical recursion techniques. 

Now, it is shown by Candel(1977)) that  the solution of free space radiation problems 
is greatly improved if the calculation is conducted on a variable scale grid. This comes 
from the fact that  one must impose certain boundary Conditions on the limits of the 
domain of integration but that  one cannot impose the exact conditions for a radiating 
field. 

We therefore use (figure 1) small computation cells in the central region allowing a 
precise calculation of the sound field and a looser grid in the two external regions. 
This artificially extends the integration domain in the transverse direction without 
increasing the number of nodes (i.e. without increasing the computation time). All 
the calculations presented are performed accordingly on a grid having 401 nodes in 
the transverse direction. The central region (0 x* 4 1)  is divided in 200 intervals 
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A r ,  = 0.005 while each external region ( -  2 < x* c 0, 1 c x ,  < 3 )  contains 100 
nodes separated by Ax1* = 4Ax, = 0.02. The step size in the axial direction is in all 
cases Az, = 0.0002. 

4. Scattering by a cylindrical refraction index inhomogeneity 
We here consider the scattering of a pIane wave by a cylindrical inhomogeneity 

with a circular cross-section. In the inhomogeneous region the refraction index is 
uniform and in the exterior region it takes a unit value. The incident plane wave 
propagates in the z direction and has a unit amplitude (figure 2 a ) :  

po(r) = exp ( ik.  r )  = exp (ikz), 

k = km = ( u / c O ) m .  

To guide our discussion of the numerical results obtained with the PEM we first 
present the solution of the problem derived with the help of the Born approximation. 

Solution based on the Born approximation 

A straightforward application of the Born approximation yields the following ex- 
pression for the scattered field (while the problem is classical a simple derivation is 
given for completeness in appendix A) : 

In  this expression J1 represents the Bessel function of order 1, R is the radius of the 
cylindrical inhomogeneity, K = kln --MI denotes the modulus of the converted wave 
vector while n and m are respectively unit vectors in the observation and incidence 
direction. The converted wave vector modulus appears very generally in scattering 
problems. Its value is classically expressed in terms of the scattering angle 0 formed 
by the incident and scattered direction: 

K = k [ n 2 + m 2 - 2 n . m ] t  = 2klsin)iOI. (39) 

At a given observation point r, the total acoustic field is the sum of the incident 
plane wave and the scattered wave ( 3 8 )  : 

p ( r )  = P d r )  +P)s(r)* (40) 

The field appears as a superposition of a plane wave directed along the z axis and a 
cylindrical wave whose amplitude depends on the observation direction. The in- 
homogeneity acts like an induced source radiating a spatially inhomogeneous cylindrical 
wave. As the numerical results are expressed in terms of modulus and phase it is here 
worth calculating these quantities. This may be done by writing (40) in the form 

p ( r )  = p , ( r )  +Po,(r)/Po(r)I* 

The field modulus is then given by 

A = [ [ 1+Re (:)I2+ [Im (?)]')', 
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and the phase relative to the incident wave may be obtained from 

When the scattered wave has a small amplitude ( lps/pol < 1) the preceding formulas 
may be approximated by 

A = l+Re(Ps/Po), (44) 

4 = Im (Ps/Po)* (45) 

(46) 

The first of these expressions may be rearranged in a slightly different form: 

x = 1nA/Ao = Re (Ps/Po), 

with A ,  = 1 designating the incident wave amplitude. 
In fact, when the Born approximation solution is interpreted according to (45) and 

(46) it becomes identical to the solution one would obtain by applying the method 
of smooth perturbation (MSP) to first order. This identity is not always stated clearly 
in theoretical studies of scattering and we therefore give a brief proof in appendix C .  

It is generally accepted (but the matter is still controversial) that the first-order 
smooth perturbation solution is more uniformly valid than the first-order Born 
approximation. For this reason we consistently adopt (45) and (46) to interpret the 
Born approximation solution. 

Now, if a, designates the scattered field ‘amplitude’, 

the field logarithmic amplitude x and the phase q5 are given by 

X(r) = a,( r) cos (in + kr-  k. r), 

$(r) = a,(r) sin (in+ kr - k . r). 
(48) 

(49) 

These two expressions indicate that the sound field oscillates in amplitude and 

(50) 

phase. This behaviour, associated to the spatial variations of 

in + kr - k . r = in+ k(x2 + z2 ) )  - kz, 

is a direct result of the interference between the incident plane sound wave and the 
scattered cylindricad wave. As the scattered field amplitude a,(r) is spatially modu- 
lated by the function J,(KR)/KR, the magnitude of the interference fringes, at a 
constant radius r ,  changes with the observation angle: 

-- u,(r, 0) 2J1(KR) - 2Jl(2kRJsin 401) 
a,(r, 0) - KR - 2kRlsin+0I 

One may note in particular that the backscattered amplitude becomes small when 
the product kR is superior to N 1-5: 

a) = 2JIPkR) 
a,(r,O) 2kR * 

If for example R = +A (kR = n) the preceding ratio is about -0.06. Indeed, it is 
generally observed that the backscattered field becomes weaker when the ratio R / h  
of a characteristic dimension of the scatterer to the wavelength increases. Now, the 
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parabolic approximation is based on the assumption that the backscattered waves 
may be neglected in comparison to the forward scattered waves (this point is well 
explained by Claerbout 1976). In the two situations analysed with the PEM, the ratio 
us(r, r) /us(r ,  0) is about 0.18 (R = t h )  and -0.06 (R = $ A )  and we cannot positively 
state that the parabolic approximation is fully justified. Nevertheless the results 
obtained appear qualitatively correct and they come close to the MSP solution. In 
fact, limitations of the PEM are not well defined and we intend to give in the future 
a detailed numerical analysis of this aspect. Returning to (48) and (49) we note that 
further evidence of the interference phenomenon may be obtained by examining the 
transverse structure of the pressure field. 

For this analysis i t  is convenient and consistent with the parabolic approximation 
to suppose that Ix/zI < 1.  Equations (48) and (49) thus become 

$(x, 2) = us(x, z) sin 

x (x ,  z )  = Us(%, 2) cos (53) 

The logarithmic amplitude and phase appear as amplitude-modulatedFresne1 gratings. 
On the z axis 

$ ( O ,  2) = as(0, 2)/% 

X(0,Z) = d o ,  21/24. 

(54) 

When the observation point leaves the axis the phase begins to increase and goes 
through a first maximum when 

FIGURE 2 ( a ) .  For legend see page 477. 
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FIGURE 2. Scattering of a plane wave by a cylindrical inhomogeneity of uniform index N = 1.2. 
The cylinder has a circular cross-section of radius R* = 0.0389 and is centred a t  z,+ = 0.5, 
z,+ = 0.005. The incident wave propagates in the positive z direction with a wavelength h* = 4R*. 
(a)  Geometry of the problem. (In the reduced system of co-ordinates the circular cross-section 
appears slightly distorted.) ( b )  Field modulus in three axial sections E, = 0.003, 0.011, 0.109. 
(c) Phase calculated with respect t o  the incident wave and represented in three axial sections 
Z, = 0.003, 0.011, 0.019. (d )  Variation of the field modulus on the z* = 0.5 axis. (e) Iso-contour 
plot of the field modulus, A = 0.74, B = 0.79, C = 0.85, D = 0.90, E = 0.95, P = 1.00, Q = 1.06, 
H = 1.11, I = 1.16, J = 1.21, K = 1.27. (f) Field modulus in perspective. 
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The logarithmic amplitude decreases and exhibits its first minimum for 

kX2  Fr = - N $ 7 ~  
22 

We are now ready to present the numerical results obtained with the PEM. 

Numerical solution of the parabolic equation 

Figures 2 (b)-(f) present the results obtained by solving the parabolic equation with 
the finite difference method of $3 .  The plots are all given in reduced co-ordinates 
(x* = x/L, z* = z / z l ,  z1 = 4nL2/h) and may be scaled to real dimensions by choosing 
an appropriate value for L. To conserve the greatest degree of generality to the 
numerical algorithm the origin of co-ordinates does not coincide with the centre of the 
inhomogeneity. We designate by xc* and zc* the co-ordinates of the centre and by 
3, = x* - x,* and 2* = z* - z,* co-ordinates measured with respect to this point. 

I n  this first example, we have selected an inhomogeneity having a radius 

R, = R/L  = 0.0389 

centred a t  x,* = 0.5, zc* = 0.005, an index of refraction N = 1.2 and a wavelength 

Figure 2(b)  shows the field modulus in three axial sections situated a t  Z* = 0.003, 
0.011, 0.019. 

The field modulus appears as expected in the form of a Fresnel grating. The pre- 
dicted decrease in the neighbourhood of the axis may also be noticed but one finds that 

h = 4R (h,  = 0.1550). 

( ~ ) a x i s / ( ~ ) i i r s t  maximum 0.55, (57) 

which significantly differs from the MSP value of - 2-4. 

5?* = 0-42 and the corresponding Fresnel number 
If we now consider the position of the first two minima we note that, for Z* = 0,019, 

(k(.))2 xi 
22 4x* 

Fr = - = - 21 2.32 

takes a value which is close to but different from that ($n) obtained for the Born 
approximation solution. However, replacing the an phase shift of (53) by $o = 0 . 2 6 ~  
we obtain a good approximation for the pressure field modulus in a form very similar 
to (53): 

x = In A / A ,  = iiX(3,, Z * )  cos [Qo + (Z*)2/4Z,]. (58) 

Here &,(if,, &) designates the envelope of the Fresnel grating plotted on a logarithmic 
scale. 

The field phase (figure 2c) also appears as a Fresnel grating. 
After an initial increase from the axis it reaches its first two maxima a t  IZ,I = 0-23 

when Z* = 0.019. The corresponding Fresnel number Fr .3= (if,)2/42, 2: 0.696 differs 
slightly from the predicted value of fn. By replacing the in phase shift of expression 
(52) by $, = 0.34 it is possible to represent the phase by 

#(x*, z* )  = qx,, z*)  sin [do+ (w142*1. (59) 

To complete this discussion it is of interest to compare the maximum values of the 
amplitude functions as (Born approximation), ii, and ii, (parabolic equation method). 
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Table 1 gives the values of these three quantities for the three sections of figures 2 ( b )  
and (c). We note that 8, and as deduced from the parabolic equation solution are very 
nearly equal and that their values are strikingly close to that of a,. Of course, this 
comparison is not performed between an exact solution and a numerical solution but 
between two kinds of approximations. However the agreement obtained is significant 
in view of the fact that  these two approximations are substantially different. 

Further information on the nature of the scattered field may be obtained by 
considering its variation in the axial direction. One finds from the field modulus of 
figure 2 ( d )  that the logarithmic amplitude (lnA/A,) tends to  zero like (Z*)-4, which 
is typical of a cylindrical wave. Figures 2 ( e )  and 2 (f) give a more complete description 
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FIGURE 3. Scattering of a plane wave by a cylindrical inhomogeneity of uniform index N = 1.2. 
The cylinder has a circular cross-section of radius Re = 0.0789 and is centred at x,* = 0.5, 
z,, = 0.005. The incident wave propagates in the positive z direction with a wavelength A, = 2R,. 
(a)  Field modulus in three axial sections 2,  = 0.003, 0.011, 0.019. ( b )  Phase calculated with 
respect to the incident wave and represented in three axial sections 2, = 0.003, 0.011, 0.019. 
( c )  Variation of the field modulus on the 2, = 0.5 axis. (d) Iso-contour plot, of the field modulus, 

J = 1.41, K = 1.51. ( e )  Field modulus in perspective. 
A = 0.49, B = 0.59, C = 0.69, D = 0.79, E = 0.90, F = 1.00, G = 1.10, H = 1.20, I = 1.30, 

PEM 
MSP r-~-----. 

z* Max a, Max dx Max d4 - 

0.003 0.221 0.229 0.228 
0.011 0.116 0.115 0.126 
0.0 19 0.088 0.100 0.098 

TABLE 1. Comparison between the maximum ‘amplitude ’ functions obtained with 
the method of smooth perturbations and the parabolio equation method. 

of the pressure field. The modulus is plotted in the central region 0 6 x* < 1 in the 
form of iso-contours and in perspective. 

The two figures clearly show the fringes produced by the interference of the incident 
and scattered waves. The ridges and troughs are located along constant Fresnel 
number parabolas 
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PEM 
7 MSP --. *-- 

- 
z* a* wx d, Max ~3~ 

0.003 0.885 6.65 0.82 
0.0 11 0-462 0.471 0.455 
0.019 0.352 0.361 0.353 

TABLE 2. Comparison between the maximum ‘amplitude’ functions obtained with 
the method of smooth perturbations and the parabolic equation method. 

A second set of figures 3 (a-e) gives some indications on the effect of a change in the 
characteristic scale to wavelength ratio. For this case, the wavelength has been kept 
constant while the radius has been doubled 

(R, = R/L = 0.0779, A, = 2R,, k, = 2 ~ R / h  = n). 

The same general remarks apply in this case; however the phase shift #, which 
must be used to represent the logarithmic amplitude and phase in the forms (52) 
and (53) is of the order of 0 . 4 6 ~  and thus differs markedly from the &r value given by 
the MSP. The maximum amplitudes as, ax and a, are comparable except at a short 
distance from the scatterer (table 2). These amplitudes are about four times as large 
as those of the previous case, corresponding to a ( ~ c R ) ~  dependence of the scattered 
field. The general structure of the fringe pattern remains unchanged in the dimension- 
less co-ordinates x,, z, as can be seen by comparing figures 2 ( e )  and 3 ( d )  or 2 (f) and 3 (e ) .  

Scattering by a cylindrical inhomogeneity of elliptical cross-section 

We here extend the foregoing analysis to a slightly different geometry. Our objective 
is essentially illustrative but we also intend to describe briefly the transition between 
the ‘geometric’ near field of the scatterer and the diffraction-dominated far field. 

The inhomogeneity is a cylinder of elliptical section defined by 

1 = (x, - xc,)2/ai + (2, - zc , )2 /b i  = ( Q 2 / a i  + (2 , )2/b$.  (61) 

Figures 4(a-h) present the results obtained for a, = 0.04, b, = 0.158 and an incident 
wavelength equal to the longitudinal semi-axis A,  = b,  = 0.158, The modulus and 
phase of the field plotted on figures 4 (a )  and ( b )  for six transverse sections 5, = - 0.001, 
0.003, 0.007, 0.011, 0.015 and 0.019 appear with the now familiar Fresnel grating 
structure. On the central axis x, = 0.5 the modulus tends asymptotically to one like 
(Z*) -4  (figure 4c) and the fringe pattern of figures 4 ( d )  and (e) has the parabolic structure 
already observed on figures 2 (e ,  f) and 3 (d, e ) .  

Figure 4 (f) indicates the position of a sequence of wave fronts separated by a phase 
interval of 0.225 x 2 ~ .  I n  the region occupied by the elliptical scatterer the wave 
fronts progress more slowly as the sound celerity is - in the case treated here - inferior 
to that of the ambient medium: 

Ac/c, = (c‘ - c,)/c, = I / N  - 1 2: - 0.167. 

The region where the wave fronts are retarded is not geometrically limited to the 
inhomogeneous region; it overlaps the edges of the scatterer and sees its transverse 
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FIGURE 4 (a). For legend see pege 487. 

dimension increase like (&)+ with a simultaneous decrease in the phase variation. This 
behaviour notably departs from that which one would expect from a purely geometric 
description of propagation. 

Wave diffraction very rapidly dominates the refraction effects and the pressure 
field exhibits a geometrical character only in the immediate vicinity of the scatterer 
(on figures 4a  and b for 2, = - 0.001 and still perceptible for i& = 0.003). 

Finally figures 4 (9)  and (h)  are presented as a posteriori justifications of the validity 
of the numerical integration. They give a view of the complete calculation domain 
( -  2 < x* < 3) with the 'external' regions plotted with a scale four times smaller than 
in the central region. Even a t  the largest axial distance z* = 0-025 the scattered field 
exhibits a very small amplitude on the left and right limits and the wavefronts are 
very nearly perpendicular to the axial direction. As a consequence the Neummn 
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FIGURE 4. Scattering of a plane wave by a cylindrical inhomogeneity of uniform index N = 1.2. 
The cylinder has an elliptical cross-section defined by (5,)2/a$+(Z,)2/6f = 1 ,  a, = 0.04, 
b, = 0.158 and is centred a t  x,, = 0.5, z,* = 0.005. The incident wave propagates in the positive 
z direction with a wavelength A, = b,. (a)  Field modulus in six axial sections Z, = -0.001, 
0.003, 0.007, 0.011, 0.015, 0.019. (6) Phase calculated with respect to the incident wave in 
six axial sections 2, = -0.001, 0.003, 0.007, 0.011, 0.015, 0.019. (c) Variation of the field 
modulus on the x, = 0.5 axis, (d) Iso-contour plot of the field modulus A = 0.27, B = 0.41, 

Field modulus in perspective. (f) Wave fronts. The phase of the first front is zero. It is 12.5 x 2n 
for the last. (9) Another iso-contour plot of the field modulus. The complete calculation domain 
is represented. In the central region (0 < x, < 1) the scale is four times that used in the external 
regions ( - 2 Q 2, < 0, 1 < x, c 3). (h)  Wave fronts plotted in the whole calculation domain. 
The scaling is similar to that of figure 4 (9) .  

C = 0.55, D = 0.70, E = 0.84, P = 0.98, G = 1.13, H = 1.27, I = 1.41, J = 1.56, K = 1.70. (e) 

conditions imposed on the @ function on the limits of the calculation grid have no 
sensible influence on the field computation. 

5. Scattering of a plane wave by a viscous core vortex 
This section presents an analysis of the scattering of a plane acoustic wave by a 

viscous core vortex (also called self-similar vortex). This elementary problem con- 
stitutes a good prototype model for the scattering of waves by large-scale velocity 
inhomogeneities of the kind encountered in turbulent shear flows. From a technological 
point of view the problem considered in this section will provide a qualitative picture 
of the scattering of sound waves crossing a turbulent mixing layer like that of an open 
wind tunnel. Recent experiments (for example, Brown & Roshko 1974; Roshko 1976; 
Winant & Browand 1974; Lau & Fisher 1975) indicate that turbulent mixing layers 
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contain an orderly vortex structure partially coherent and quasi-periodic in space and 
time. Other experiments (Candel et al. 1975, 1976a, b, 1977; Candel, Julienne & 
Julliand 1976) show that this large-scale coherent structure dominates the scattering 
process. Indeed the large-scale structure gives to the scattered field its convective, 
projective and wave-like nature.+ It is also responsible for the formation of two 
distinct sidebands in the sound field spectrum. In fact the scattered field appears like 
a projected image of the Iarge-scale organized motion existing in the mixing layer. I n  
view of this evidence it seems possible to analyse the scattering of sound waves by a 
shear layer as a sequence of discrete events quasi-periodic in time having a spatial 
structure similar to  that produced by the interaction of an incident wave and an 
isolated vortex. I n  proposing this description we abandon the classical approach of 
the problem of scattering by turbulent motion which is based on a statistical char- 
acterization of the phenomenon (typical analyses of this kind are presented by 
Tatarski 1961). 

Now, a complete description of the scattering by a turbulent mixing layer requires 
detailed information on the large-scale vortices forming the coherent structure. This 
information is not a t  present complete so that we prefer using a viscous core vortex 
as a model for the real vortices (this choice is suggested by Legendre 1968). 

Independently of this problem, another application motivates our analysis. It is the 
remote detection and ranging of the trailing vortices of the large transport aircraft. 
The persistence of these vortices in the vicinity of airports may be a cause of accidents 
for small business aircraft. Among the detection methods put forward, those based 
on the scattering of sound waves by the vortices seem promising. Most of the location 
systems using this principle operate in a frequency band of a few kHz and in a bistatic 
mode with separated transmitter and receiver. This configuration is preferable to a 
monostatic arrangement because the backscattering cross-section for velocity fluctua- 
tions is in principle nu1 or most probably very small. The analysis presented in this 
section corresponds to the bistatic situation for scattering angles (01 5 35". This 
limitation is that  generally accepted for the parabolic equation method. For higher 
scattering angles the analysis could be carried in two steps: (i) use the parabolic 
equation to calculate the propagation of the incident wave and its interaction with 
the vortex; (ii) choose a new propagation direction towards the observation point and 
apply the parabolic equation to calculate the scattered field around this axis, the 
field determined in the first step providing the new initial conditions. 

We shall not carry out this procedure here and shall limit our analysis to the forward 
scattering problem. 

It is now worth reviewing the previous studies of this problem. High frequency 
geometrical techniques based on ray tracings are used by George (1972); Butler, 
Holbeche & Fethney (1973); Dowdling (1975); Candel (1976). Such analyses make 
evident the refractive properties of the vortex flow but they do not take account of 
diffraction effects and fail in the fioximity of caustics which inevitably form in the 
neighbourhood of the vortex core. The calculation of the field in such regions requires 
special techniques and it is generally not performed except for very slow vortex 
motions and only before the caustic has formed. Low-frequency analyses based on 

+ In addition these experiments and in particular the correlation and coherence analysis 
performed between the turbulent and scattered field indicate that the scattered wave detected 
at a microphone is emitted when a 1arge.scale vortex crosses the source microphone line. 
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the Born approximation have been performed by other authors. Muller & Matschat 
(1959) consider the interaction between a cylindrical vortex and a plane acoustic 
wave. The vortex core in their study is in solid body rotation and presents an arbitrary 
inclination. Ferziger (1974) considers a plane wave propagating perpendicular to a 
viscous core vortex. The same situation, together with the case of a cylindrical incident 
wave, is studied by O’Shea (1975) in a detailed manner. These three investigations 
based on the Born approximation lead, in the case of an infinite vortex flow, to a 
singular solution in the incidence direction. The singularity of the forward scattered 
field is associated according to O’Shea (1975) to the fact that the interaction region 
between the incident wave and the vortex is infinite and that the tangential velocity 
decreases asymptotically like r -  l. In  this situation the Born approximation is not 
strictly applicable. It is generally accepted only when the wavelength is much larger 
than a characteristic dimension of the scatterer or more precisely when 

(NZ- 1)  (kR)2 4 1. 

Nevertheless the Born approximation will help us in interpreting the results of the 
parabolic approximation. We intend to show that the PEM is in this problem (and 
in other problems of acoustic wave propagation in moving media) far superior to the 
more classical geometrical and low-frequency approximations. 

Solution based on the Born approximation 

The tangential velocity in a viscous core (self-similar) vortex is at  a distance r from 
the axis 

(62) 
r 

U g ( 4  = Kr (1  - exp ( - r2 /R2)) ,  

where I’ represents the circulation at a large distance from the vortex axis and R 
designates a characteristic scale of the flow ( R  = 4vt for a viscous flow). 

Another representation is sometimes convenient: 

where RM ‘the vortex radius’ is the distance from the axis at which the tangential 
velocity attains its maximum value u,. This is so if ,L? = 1.26 and ct = 1.40. Equations 
(62 )  and ( 6 3 )  are identical if 

r = 2naUM RM, (64)  

R = RM/p*. (65) 

We use ( 6 2 )  for the theoretical calculations and (63 )  for the numerical simulations. 
The Born approximation solution is derived in appendix B by techniques similar 
to those of Ferziger (1974) and O’Shea (1975). The result differs slightly but sig- 
nificantly from those given earlier. 

In the case of a plane incident wave of the form exp ( -id), the field scattered by 
the vortex is written 

exp ( - IK2R2) [$ cot 80 - sin 40 cos $01 exp (ih - $in), pJr, 0 )  = - - (2nkr)t c,, (66)  
1 rE 
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where K = 2k sin #0 the converted wave vector modulus appears in the exponential 
term only. The scattered field is the sum of two scattered waves 

exp ( - &K2R2) 4 cot $O exp (ikr - &in), p i ( r )  = -- 
(2nkr)* c, 

i r k  

1 r k  
exp ( - & P I P )  sin 40 cos 80 exp (ikr - tin). p z ( r )  = --- 

(2nkr)d c ,  

If we return to the basic interaction equation (9) written for T'/To = 0:  

the scattered fields p i  and p t  correspond to the factors appearing in the right-hand 
side of this equation. The ratio of these two waves is 

l p ~ l / l p ~ \  = 1/2sin2@, (70 )  

which, for small scattering angles, is sufficiently large so that p f  may be neglected 
with respect to pi .  This conclusion was already reached in $ 2  and on the basis of 
this argument we also justified the simplification of the parabolic equation (30). 

NOW the total field around the direction of incidence takes the form 

P@)  = Po@) + p i ( r )  = Po(r) (1 +P,1/PO). 

x = lnA/A, = Re (Pi/P,), (72 )  

+ = Im (Pi/PO)> 173) 

(71 )  

If this expression is interpreted according to 

it identifies to the solution of the problem which would be obtained with the method 
of smooth perturbations to first order. Then 

x = a, cos (in + kr - kz)  sgn (0 r ), ( 7 4 )  

+ = u,in (in + kr - kx) sgn (Or), 
where 

( 7 5 )  

and sgn ( O r )  is the sign of the product O r .  When the vortex induces a positive circula- 
tion (I? > 0)  expressions ( 7 4 )  and ( 7 5 )  show that, nea,r the axis and for a positive 
scattering angle 0, the logarithmic amplitude and the phase are both positive. In 
this case according to the definition of x, A is superior to A,. When the scattering angle 
is negative so are x and $ and A < A,. 

One also notes that x and q5 are antisymmetric functions of 0 and that near the 
axis (in the region where the parabolic equation solution is indeed valid) 

x = u,cos in+- sgn(OF), ( El (77 )  
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and 

appear as antisymmetrical Fresnel gratings. This structure is associated with the 
interference between the incident plane wave and the cylindrical scattered wave. The 
fringes produced a t  a constant distance from the vortex axis are spatially modulated 
by the function 

and their amplitude decreases as the scattering angle increases. 

exp ( - )K2R2) I cot 30 1 = exp ( - k2R2 sin2 30 1 cot 30 1, (79) 

Solution based on the parabolic equation method 

Figures 5 (a-g) display the numerical results obtained in analysing the scattering by a 
viscous core vortex having a radius RM* = RM/L = 0-0389, a maximum tangential 
velocity u, = 20m/s for an incident wavelength h = 4RM (k, ='kRM = in). The 
vortex centred at xc* = 0.5, z,* = 0.005 induces a positive circulation in the pro- 
pagation medium (a rotation from the x* to the z* axis). The motion is represented 
on figure 5 (a )  using the equivalent index of refraction N 2  = 1 - 2u,/c, defined a t  the 
end of $ 2 .  This index is smaller than one in the region where the axial velocity uz 
is positive (x* > 0-5). In  this half-plane the phase velocity is higher than the reference 
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velocity co due to convection by the medium. I n  the other half plane (x, < 0-5) the 
wavefronts are retarded by the backward flow they encounter and the refraction 
index is greater than one. The modulus and phase of the pressure field are represented 
on figure 5 ( b )  in three axial sections X* = 0.003, 0.011 and 0.019. For a positive 
scattering angle (x* < 0.5) the modulus and phase begin by increasing from the 
x* = 0.5 axis; they are seen to decrease for a small negative scattering angle (2, > 0.5). 
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The modulus and phase exhibit oscillations of decreasing amplitude as the distance 
to the x* = 0.5 axis increases. The logarithmic amplitude 

x = InA/A, E ( A - A , ) / A , ,  

appears to be approximately antisymmetric. The phase is also roughly antisymmetric. 
The previous observations agree with those deduced from the Born approximation 
solution. However there are important differences. First of all the numerical solution 
is not singular in the axial direction. I n  addition, and this applies in particular to the 
phase, one notes that the oscillations corresponding to the fringes formed in the 
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FIGURE 5 ( f ) .  For legend see page 495. 

interference of the incident and scattered fields are superposed to a mean variation 
of the phase or amplitude functions. The mean phase variation is associated to  
refraction of the sound waves in their propagation through the vortex flow: when 
x* > 0.5 the axial velocity u, is positive, the waves are convected by the flow and a 
negative phase variation results. The inverse effect is observed in the other half-plane 
x* < 0.5,  where the axial velocity is negative. The parabolic equation thus accounts 
simultaneously for the refraction and diffraction effects, demonstrating that the PEM 
is far superior to the low-frequency Born approximation or high-frequency geometrical 
approximation. The total field is thus determined by a competition between refractive 
and diffractive effects and it may be conjectured that, for a constant r l h  ratio and a 
vortex core radius RAlf much smaller than the wavelength, diffraction is the dominant 
mechanism and produces oscillations of x and # of a kind similar to those of (77) and 
(78). When R,/h increases, refraction induces larger mean variations and the total 
field presents interference fringes superposed to mean amplitude and phase modula- 
tions. 

Figure 5 ( d )  confirms the regular behaviour of the field modulus on the central axis 
(x* = 0 . 5 ) .  The modulus decreases very slightly with distance. This may be inter- 
preted in terms of ray acoustics by observing that the initial ray tube corresponding 
to the incident plane wave expands very slightly in the central region where the axial 
velocity is near zero. Figures 5 (e) and ( f )  give a more complete description of the field 
modulus in the central region (0 < x* < 1) .  These two figures show the central fringes 
and portions of the following ripples and clearly indicate the antisymmetric nature 
of the modulus. 
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FIGURE 5. Scattering of a plane wave by a viscous core vortex. The vortex is centred at 
z,* = 0.5, z,* = 0.005. The tangential velocity reaches its maximum UM = 20m/s at a distance 
RM* = 0.0389. The medium rotates in the positive direction (from the z to the z axis). The incident 
wave propagates in the z direction with h = ~ R M .  (a)  Effective index N = (1 - 2u,/c0) t plotted 
iniso-contourformA = 0.941, B = 0.954,C = 0.967,D = 0.980,E = 0.993,P = 1.006,G = 1.019, 
H = 1.032, I = 1.045, J = 1.058. (b )  Field modulus in three axial sections Z* = 0.003, 0.011, 
0.019. ( c )  Phase calculated with respect to the incident wave in three axial sections Z* = 0.003, 
0.011, 0.019. (d )  Variation of the field modulus on the x* = 0.5 axis. (e) Iso-contour plot of the 
field modulus A = 0-81, B = 0.84, C = 0.88, D = 0.92, E = 0.95, P = 0.99, G = 1-02, H = 1.06, 
I = 1.09, J = 1.13, K = 1.17.  ( f )  Field modulus in perspective. (9) Wave fronts. The phase of the 
first and last fronts are respectively 0 and 12.5 x 277. 

A sequence of 50 wavefronts is plotted on figure 5 (9). The phase interval between 
two successive fronts is a fraction of 27r radians 

A$ = 12.5 x 2 ~ 1 4 9  = 0*255(2~)  

and slightly less than four fronts constitute a wavelength. The deformations observed 
in the central region are essentially caused by refraction, a faster propagation is 
apparent for x, > 0.5 and a retarded motion may be noticed for x* < 0.5. 

Figures 6(u-f) give the results of a calculation performed for the same incident 
wavelength but a vortex with a radius R,, = 0.0789, double that of the previous 
case. The effect of refraction is stronger and induces larger mean phase and modulus 
variations. 

Conclusion 
The foregoing analysis clearly shows the utility of the parabolic equation method 

for the treatment of scattering of (acoustic) waves by various kinds of inhomogeneities. 
The parabolic equation may be solved numerically with efficient and precise finite 
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difference methods and the results obtained in the simplest situations (circular and 
elliptical cyIinder of uniform refraction index, viscous core vortex) are in qualitative 
(and sometimes quantitative) agreement with analytical solutions based on the 
Born approximation and interpreted according to the method of smooth perturba- 
tions. In  all cases the parabolic approximation is superior to the more classical Born, 
smooth perturbation and geometrical approximations. 
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FIGURE G Scattering of a plane wave by a viscous core vortex. Conditions similar t o  those of 
figure 5 except that Rhf* = 0.0779. ( a )  Equivalent index plotted in iso-contour form A = 0.941, 

J = 1.059. ( b )  Field inodulus in three axial sections 2, = 0.003, 0.011, 0.019. ( c )  Phase calculated 
with respect to the incident ware in three sections Z* = 0.003, 0.011, 0.019. (d) Variation of the 
field modulus on the z* = 0.5 axis. ( e )  Iso-contour plot of the field modulus A = 0.63, B = 0.70, 

(f) Field modulus in perspective. 

B = 0.954, C = 0.967, D = 0 960, E = 0.993, F = l . O O G ,  G = 1.019, H = 1.032, I = 1.045, 

C = 0.77, D = 0.63, E = 0.90, F = 0.96, G = 1.03, H = 1.10, I = 1.16, J = 1.23, K = 1.30. 
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Appendix A. Scattering of a plane wave by a cylindrical 
inhomogeneity of circular section 

This appendix presents the Born approximation analysis of the scattering of a 
plane wave by a circular cylinder inhomogeneity having a uniform refraction index. 
The solution of similar problems has been known for some time. Rayleigh (1881) 
and Gans (1925) treated the scattering of a plane wave by a diaphanous sphere (a 
description of this problem is also given in a textbook of Jones 1964, p. 513). 

We seek a solution of the following inhomogeneous scalar wave equation 

02ps + kzps = - k2(N2 - l)po, (A 1) 

where p, = exp (ikm . r) represents the incident plane wave and p8 designates the 
scattered field. The two-dimensional Green's function 

G(rjr,) = $iHA(klr- rol), 

Ps(r) = 1 k2(N2 - l)po(ro) @Wl r - rol) dro. 

(A 2) 

(A 3) 

may be used to write the solution of (A 1) in the form 

For a distant observation point that is for kl r - r,l 9 1 the Hankel function may 
be replaced by its asymptotic expansion 

If the observation point is in the far field of the scattering volume r 9 r,, the previous 
expansion may be replaced by 

H A  - (&)' exp (ikl r - rol - &in), (A 5 )  

and the scattered field becomes 

A classical (Fraunhofer) evaluation of expressions of this kind consists of replacing 
the distance / r - r,l by the first two terms of its power series expansion 

Ir-r,l _N r-n.r , ,  n = r/r. 
This yields 

( N 2  - 1) exp ( - ik(n -m) . r,) dr,. (A 7) I k2 exp ($in + ikr) 
ps(r) = 2(27Tkr)* 

17-2 
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The scattered field appears as the Fourier transform of ( N 2  - 1 )  with its argument 
equal to the converted wave vector K = k(n - m). In  the case of a uniform refraction 
index and a circular geometry it is convenient to evaluate (A 7) in polar co-ordinates: 

'1 x, = ro cos 8, zo = rosin 8, 

K,  = ~ c o s # ,  K, = Ksin4.J 
Then 

k2 exp ( t i n )  
ps(r) = 2(2nkr)h exp ( ik r )  ( X 2  - 1 )  so2" dB joR exp ( - iKro cos (0 - 4)) ro dr, do. 

(A 9) 

Using the classical integral representation of the zeroth-order Bessel function this 
expression becomes 

p,( r) = k2 exp (air + i k r )  (g - ( N 2 -  ~ ) j o R J o ~ ~ ~ o ) ~ o d r , ~  (A 10) 

which may be integrated by making use of another well-known identity 

(A 1 1 )  
d 
- [CJl(C)l = CJO(0. 
dC 

The scattered field thus takes the final form 

t 
p s ( r )  = ( k R ) 2  (2) ( N 2 -  l)JIG exp ( @ n + i k r ) ,  

where K designates the modulus of the converted wave vector K = 2klsin 801 

Appendix B. Scattering of a plane acoustic wave by a viscous core vortex 
We analyse in this appendix the scattering of a plane acoustic wave by a viscous 

core vortex. The calculations, based on the Born approximation, resemble those of 
Ferziger (1974) and O'Shea (1975). However the computation techniques are somewhat 
simpler and our result differs slightly but significantly from those presented in the 
previous studies. We shall therefore present this development in some detail. 

Equation (9) derived in 5 2 provides a convenient starting point. In  the absence of 
temperature fluctuations the scattered field is given by 

where the incident field is a plane wave propagating in the m direction : 

po(r) = A,exp(ik.r) = A,exp(ikm.r). (B 2) 

For a two-dimensional flow field the solution of this equation may be expressed in 
terms of the free space Green's function 

G(rlro) = &ifG(klr-- roll, (B 3) 

where Ha the zeroth-order Hankel function behaves at infinity like a diverging 
cylindrical wave. 
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Then 

601 

m.u p8(r) = -2k2---po(r,) ~iH~(klr-r,f)dr, s co 

mm : Vupo( r,) &iH;( k I r - roI ) dr,. (B 4) 

An important simplification may be obtained by choosing the x3 axis in the direction 
of incidence and the x2 axis perpendicular to the flow field. Expression (B 4) thus 
becomes 

U 
p5(r) = - 2k2_3po(r,) )iHi(kl r - r,l) dr, s co 

At this point it is necessary to use a far-field approximation and replace the Hankel 
function H i  by its asymptotic form 

This implies that the distance I r - r,l is large compared to the wavelength and in 
consequence the integration volume must be located sufficiently far from the observa- 
tion point. However the velocity field under consideration behaving like r;l is un- 
bounded and using (B 6) is not rigorously justified. To overcome this difficulty we 
can limit the radius of the integration volume in a first step and then let this radius 
tend to infinity. 

Now, an additional approximation is needed for evaluating (B 5 ) .  We use the 
classical Fraunhofer expansion and write (B 6) as 

where n designates the unit vector in the observation direction (n = r/r). The 
scattered field thus becomes 

s k2 2 t 
p5(r) = - +i (G) exp (ikr - fin) A,  u3(ro) exp ( - ik(n -m) . r,) dr, 

-:.k 2 c ,  (L)texp(ikr- nkr &)Ao (B 8) 

which may be written as 
A ,  PAr) = -- 

where 
I ,  = 1 u3( r,) exp ( - iK . r,) dr,, 

I ,  = 12 (r,) exp ( - i~ . r,) dr,, 

K = k(n-m). 
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1, and 1, appear as the Fourier transforms of the axial velocity u3 and its derivative 
in the x3 direction. If these two expressions exist it is possible to write 

I ,  = E,iK3, (B 121 

and the scattered field takes the general form 

13,(r) = -- exp (ikr - &in) - ik2 ( 1 + - 2) /u3(ro)exp( - i K .  ro)dro. (B 13) 
(27rkr)t CO 

To calculate this field it is sufficient to evaluate the Fourier transform of u3 for the 
converted wave vector K. This feature is of great practical interest as multi-dimen- 
sional Fourier transforms may be efficiently determined with an FFT algorithm. 

Now in the case of a viscous core vortex this numerical procedure is not necessary 
as (B 10) and (B 11) may be integrated analytically. The tangential velocity at a 
distance r from the vortex axis is 

r 
uo( r) = 2nr (1 - exp ( - +/A?)). 

If 6 represents a polar angle measured from the x1 axis the axial velocity is 

u3 = uo( r) cos 6, 

and the derivative of u3 in the axial direction has the form 

The converted wave vector K may be represented in polar co-ordinates by 

K, = Kcosq5, K3 = Ksinq5, 

and (B 10) and (B 11) become 

I ,  = J J ua( r,) cos 6 exp ( - iKr, cos (6 - q5)) ro dr, do, 
0 

1, = lom Sf" rg -$ k) 3 sin 26 exp ( - iKr,  cos (6 - 9 ) )  dr, d6. 

We first consider I ,  and use the change of variable [ = Kr,, 

1 , - -  - ~ P / ~ ~ o [ d [ ~ 0 2 r c o s 6 e x p ( - i [ ~ ~ s ( 6 - q 5 ) ) d ~ .  

The angular integral 

L, = lo2" cos 6 exp ( - ig cos (6 - 9 ) )  d6, 

becomes, after a few changes of variables, 

277-# 

-# 
L, = cos#/ exp(i(B-[cos@)dB, 
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and a formula given by Jones 1964, p. 70:t 

a+2n 

a 
(B 22) 

(B 23) 

1 
J&) = 2n exp (@n) 1 exp (i(n8 - ccos 0 ) )  do, 

directly yields 
L, = - i cos $ 2nJ1([). 

Then expression (B 17)  becomes 

( 1  - exp ( - g2/K2R2)) 4({) d5. 

Before completing this calculation we first write 1, in a similar form. The change of 
variable c = Kr, applied to (B 18) yields 

The integration over 8 may be performed as before after a few changes of variables 
and an application of (B 22): 

Substituting this result in expression (B 25) and integrating by parts leads to 

I, = r sin $ cos (6 ( 1  - exp ( - cz/K2R2)) J1(c) dc. (B 27) LW 
Thus I, = 1, iK sin $ = iK ,  I,, which is in agreement with expression (B 12). 

To evaluate 

L3 = lom ( 1  - exp ( - C2/K2R2)) Jl(5) dC, 

we let a2 = 1/K2R2. L3 is the difference of two integrals: 

and 

(B 30) 

The last expression is given by Abramovitz & Stegun (1965) (formula 11.4.28, 
p. 486) who also list (p. 509) the suitable hypergeometric function 

Then 

ez 
M (  1,2,2z) = - sinh z. 

L, = exp ( - $K2R2), 

2 

t Watson (1962, p. 20), gives a different expression for J,(g) which seems erroneous: 

exp ( i ( n e - ~ o o s e ) )  do. 
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and (B 24) and (B 27) become 
r 

I ,  = - cos + exp ( - tK2R2), 

I, = I’ sin 4 cos 4 exp ( - iK2R2). 

iK 

The scattered field is then obtained by inserting these expressions in (B 9): 

This result is more convenient when writhen in terms of the scattering angle 0. 
This transcription may be performed with 

K = 2kIsin@I, 

Kcos4 = k(n-m), = -lcsin@, 

Ksin4  = k(n-m), = k(cos@-l), (B 36) 

and the scattered field finally becomes 

r k  
= (2nkr)t CO 

exp (ikr - $in) - exp ( - tK2R2), A0 

[a cot 40 - sin +@ cos +@I. (B 37) 

This expression may be compared to that obtained by O’Shea (1975) (expression 37), 
which in our notations appears as 

rlc 1 A0 
277 (2nkr)t CO 

exp (ilcr - tin) - p , ( r )  = -- - [+cot 80 +sin +@ cos 401. (B 38) 

One notes t,he absence of exp ( -  tK2R2), the presence of an additional (2n)-l factor 
and a difference in sign. 

Turning now to the scattered field given by Ferziger (1974) (his expression A 7 ) t  
we note that it has incorrect dimensions and misses a factor (277kr)-4. Correcting 
these deficiencies and performing the remaining integration leads us to 

1 rkexp(ikr) 
p,(r) = - A -  [Isin cos *0 - +cot 401 exp ( -  tK2R2). (B 39) 

277 co -@&$ 

The term in the bracket appears in the same form as that of (B 37) but its sign does 
not change with 0. In addition we note the presence of a (2n)-l factor and the absence 
of exp ( - *in). 

Finally it is worth calculating the scattering cross-section using the scattered field 
(B 37). This ‘cross-section’ may be defined by the ratio 
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and in cylindrical geometry it has the dimension of a length: 

k exp ( - 3K2R2) cos2 0 cot2 80. 

Appendix C. Relation between the method of smooth perturbation 
and the Born approximation 

Consider the following equation : 

V2p  + k2N2p = 0. 

The solution of this equation may be sought in the form of a Neumann series 

p = po+p1+pz+ . . a ,  

where the successive terms are given by 

v2po + k2po = 0, 

V2p1 + k2p1 = - k2(N2-  l ) p o ,  

V2pz + k2p2 = - k2(N2 - l ) p l .  

The zeroth-order term represents the incident wave, The first-order term is the 
scattered field in the so-called Born approximation 

Pl(l-1 = 1 k2(N2-  ~ ~ P O ~ ~ O ~ ~ ~ ~ ~ ~ O ~ ~ ~ O ~  (C 4) 

where G( rl ro) designates the free space Green’s function for the Helmholtz equation. 
In  the method of smooth perturbation (Tatarski 1901) the field is sought in the 

form 

and (C 1) is replaced by 

Instead of the Neumann expansion (C 2 ) ,  4 is written as a series 

P ( r )  = exp (&rl), (C 5 )  

V24 + (V#)2 + k2N2 = 0. 

9 = 90+91+42+..., (C 6) 

where the successive terms satisfy the following equations : 

V2#, + (Vq5,)Z + k2 = 0, 

v2+2 + 2V$O. v92 = - ( V M ,  

V2$, + 2V9, . Q#l = - k2(N2 - i), 

... . 
The solution of the first equation is $o = lnpo. 

The second equation may be solved by writing dl in the form 

9 1  = exp ( -  do(r)) 
This yields for w 

so that 
V2w + k2w = - k2(N2 - 1) exp (#o) ,  

w ( r )  = J k2(N2 - 1) exp (9dro)) G(rl ro) dro. 
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Then the first-order term in the series expansion of 9 becomes 

1 
$l(r‘) = - / k 2 ( N 2 -  l)Po(ro) w-1 ro) dro. 

Po(r) 
A cornparison of expressions (C 4) and (C 11) leads to the following identity: 

91(r) = Pl(r)/Po(r). (C 12) 

If the higher-order terms in the series of 9 are negligible, the real part of q51 represents 
the logarithmic amplitude of the sound field and its imaginary part provides the phase 
of the field with respect to the incident wave po. Indeed 

Po = AoexP ( i $o ) ,  (C 13) 

and 

$ - $0 = I m  (91) = Im (Pl/PO)* (C 16) 
I n  conclusion the solution of problem (C 1) in the framework of the method of smooth 

perturbation to  the first order may be obtained by seeking the Born approximation 
solution of the same problem and then interpreting the result with the last two 
expressions. 
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